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Operations research and optimization

Operations research (OR)

▶ Operations research and optimization are at the intersection of multiple disciplines.
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Operations research and optimization

Operations research (OR)

▶ OR solves optimization problems that decision-makers
(managers, politicians, engineers, etc.) encounter.

▶ Problems are typically expressed in terms of decisions, costs
and constraints.

▶ Tools coming from mathematics, informatics, economics
and industrial engineering are often used in their solution.

▶ The end result is a decision-making tool.

min
x∈X

f (x)

Some examples

▶ Route optimization

▶ Planning and scheduling

▶ Network design (telecommunications,
distribution, electricity, etc.)

▶ Supply chain management

Arslan, Ayşe N. 2 / 17



Operations research and optimization

Some projects from our team1

Kidney exchange
0 AB

AB 0 0 A

A AB

Maintenance planning Retail network design

Phytosanitary treatments Maritime transportation Energy mix planning

1Team EDGE-Centre Inria de l’Universite de Bordeaux
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Operations research and optimization

Classical tools of operations research2

▶ Mathematical programming
▶ Linear programming (LP/PL)
▶ Mixed-integer linear programming (MILP/PLNE)
▶ ..

▶ Graph theory and algorithms

▶ Constraint programming (CP/PPC)

▶ Convex analysis

▶ Approximation algorithms

▶ Heuristics, metaheuristics

▶ Queueing theory, simulation, statistics

▶ ...

2Most topics are covered in the master MAS-ROAD
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Operations research and optimization

Mathematical programming: Linear programming

min
x∈Rn

+

c⊤x

s.t. Ax ≤ b
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−x1 + x2 ≤ 1

2x1 + 3x2 ≤ 12

3x1 + 2x2 ≤ 12

x1 + x2

x1

x2

▶ Well-known algorithms: Simplex, ellipsoid, interior point, etc.

▶ Solvers: CPLEX, Gurobi, Clp, HiGHS, Excel-Solver etc.
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Operations research and optimization

Mathematical programming: Mixed-integer programming

min
x∈Zn1

+ ×Rn2
+

c⊤x

s.t. Ax ≤ b

1 2 3 4

1

2

3

−x1 + x2 ≤ 1

2x1 + 3x2 ≤ 12

3x1 + 2x2 ≤ 12

x1

x2

▶ Integer/binary decisions that cannot be rounded from fractions:
▶ Do we open facility i or not?
▶ How many trucks do we need to send to client j from facility i?
▶ If facility i is not open then it cannot be used to satisfy demand.

▶ Well-known algorithms: Branch & Bound, Branch & Cut etc.

▶ Solvers: CPLEX, Gurobi, HiGHS, GLPK etc.
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Operations research and optimization

Mathematical programming: Mixed-integer programming

▶ Branch & Bound: Solve relaxations and successively partition the feasible region

1 2 3 4

1

2

3

−x1 + x2 ≤ 1

2x1 + 3x2 ≤ 12

3x1 + 2x2 ≤ 12

x1 + x2

x1

x2

1 2 3 4

1

2

3

−x1 + x2 ≤ 1

2x1 + 3x2 ≤ 12

x1 + x2

x1 ≤ 2

x1

x2

1 2 3 4

1

2

3

3x1 + 2x2 ≤ 12

x1 + x2

x1 ≥ 3

x1

x2

Arslan, Ayşe N. 6 / 17



Operations research and optimization

Mathematical programming: Mixed-integer programming
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Operations research and optimization

Difficulty of mixed-integer programming problems3

▶ Mixed-integer programming problems are NP-Complete in the general case.

▶ In practice, considerable progress has been made since the beginning.

A classical problem: Traveling salesman

▶ Find the shortest cycle passing through N cities
given the pairwise distances.

▶ In theory finding the best cycle requires testing
N! possibilities.
▶ For 10 cities (N=10) : < 1 milliseconds
▶ For 30 cities (N=30) : 35000 billion years

3Source : http://www.math.uwaterloo.ca/tsp/
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Operations research and optimization

Difficulty of mixed-integer programming problems3

▶ Mixed-integer programming problems are NP-Complete in the general case.
▶ In practice, considerable progress has been made since the beginning.

1.9 millions cities to 0.0473% optimality 1 331 906 450 stars to 0.37% optimality

▶ Powerful heuristics coupled with branch
& cut

▶ Many results dedicated to the problem

▶ Months of computation in parallel
processing

3Source : http://www.math.uwaterloo.ca/tsp/
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Operations research and optimization

Advanced techniques in mixed-integer programming
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Implicit enumeration Extended formulations Decomposition algorithms Geometric analysis
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Kidney exchange problem

What is the Kidney Exchange Problem (KEP)?

▶ Chronic kidney disease is a serious health condition
threatening the lives of many in our society.

▶ It is the 11th most common cause of death in the world.

▶ There are two common treatments for this disease :
dialysis and kidney transplant.

▶ Dialysis is easily available but requires weakly visits to the
hospital and degrades the quality of life of the patient.

▶ Kidney transplants, once successfully performed may give
the patients the chance for a healthy life.

▶ Finding a willing and compatible donor can be very
difficult.

D1 P1

D2 P2
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Kidney exchange problem

What is the Kidney Exchange Problem (KEP)?

▶ Given
▶ A list of incompatible patient-donor pairs
▶ The compatibility information between donors and patients of different pairs
▶ A limit K on the size of cycles

▶ Find a set of exchange cycles such that
▶ Each cycle has size ≤ K
▶ Each patient-donor pair is involved in at most one cycle
▶ A maximum number of transplants is performed

Instance with 4 pairs, K=3

D1 P1

D2 P2 D3 P3

D4 P4

Possible solutions

D1 P1

D2 P2 D2 P2 D3 P3

D4 P4

D2 P2

D4 P4

This problem is known to be NP-Complete for K ∈ [3,∞).
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Kidney exchange problem

A possible mathematical formulation of the problem

▶ Data
▶ P: set of patient-donor pairs indexed i = 1, . . . , |P|
▶ (i , j) ∈ A: compatibility information between donors and patients of different pairs
▶ K : cycle size limit

▶ Variables
▶ xij ∈ {0, 1}: 1 if a transplant between donor of pair i and patient of pair j is to be

performed, 0 otherwise

max
∑

(i,j)∈A

xij

s.t.
∑

j∈δ+(i)

xij =
∑

j∈δ−(i)

xji ∀i ∈ P

∑
j∈δ+(i)

xij ≤ 1 ∀i ∈ P

x ∈ {0, 1}|A|

Arslan, Ayşe N. 10 / 17



Kidney exchange problem

A possible mathematical formulation of the problem

▶ Data
▶ P: set of patient-donor pairs indexed i = 1, . . . , |P|
▶ (i , j) ∈ A: compatibility information between donors and patients of different pairs
▶ K : cycle size limit

▶ Variables
▶ xij ∈ {0, 1}: 1 if a transplant between donor of pair i and patient of pair j is to be

performed, 0 otherwise

max
∑

(i,j)∈A

xij

s.t.
∑

j∈δ+(i)

xij =
∑

j∈δ−(i)

xji ∀i ∈ P

∑
j∈δ+(i)

xij ≤ 1 ∀i ∈ P

∑
(i,j)∈Path

xij ≤ K − 1 ∀Path ∈ AllPaths(K)

x ∈ {0, 1}|A|
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Kidney exchange problem

Another possible mathematical formulation

▶ Data
▶ P: set of patient-donor pairs indexed i = 1, . . . , |P|
▶ (i , j) ∈ A: compatibility information between donors and patients of different pairs
▶ K : cycle size limit

▶ Additional data
▶ CK : set of cycles of size at most K
▶ CK (i): set of cycles of size at most K containing pair i
▶ |c| for c ∈ CK : number of pairs involved in cycle c

▶ Variables
▶ xc ∈ {0, 1}: 1 if cycle c ∈ CK is chosen as part of the solution, 0 otherwise

max
∑
c∈CK

|c|xc

s.t.
∑

c∈CK (i)

xc ≤ 1 ∀i ∈ P

x ∈ {0, 1}|C|
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Kidney exchange problem

Yet another possible mathematical formulation

▶ Data
▶ P: set of patient-donor pairs indexed i = 1, . . . , |P|
▶ (i , j) ∈ A: compatibility information between donors and patients of different pairs
▶ K : cycle size limit

▶ Variables
▶ xpij ∈ {0, 1}: 1 if a transplant between donor of pair i and patient of pair j is to be

performed in a cycle starting from pair p, 0 otherwise

max
∑
p∈P

∑
(i,j)∈A

xp
ij

s.t.
∑

j∈δ+(i)

xp
ij =

∑
j∈δ−(i)

xp
ji ∀p ∈ P, ∀i ∈ P

∑
(i,j)∈A

xp
ij ≤ K ∀p ∈ P

∑
p∈P

∑
j∈δ+(i)

xp
ij ≤ 1 ∀i ∈ P

x ∈ {0, 1}|A|×|P|

∑
p∈P

∑
j∈δ+(i) x

p
ij ≤ 1 ∀i ∈ P

∑
j∈δ+(i)

x1ij =
∑

j∈δ−(i)

x1ji ∀i ∈ P

∑
(i ,j)∈A

x1ij ≤ K

∑
j∈δ+(i)

x2ij =
∑

j∈δ−(i)

x2ji ∀i ∈ P

∑
(i ,j)∈A

x2ij ≤ K

...

∑
j∈δ+(i)

x
|P|
ij =

∑
j∈δ−(i)

x
|P|
ji ∀i ∈ P

∑
(i ,j)∈A

x
|P|
ij ≤ K
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Kidney exchange problem

And finally...

▶ Data
▶ P: set of patient-donor pairs indexed i = 1, . . . , |P|
▶ (i , j) ∈ A: compatibility information between donors and patients of different pairs
▶ K : cycle size limit

▶ Additional data
▶ Cp

K : set of cycles of size at most K starting from pair p
▶ Cp

K (i) : set of cycles of size at most K starting from pair p containing pair i
▶ |c| for c ∈ Cp

K : number of pairs involved in cycle c

▶ Variables
▶ xpc ∈ {0, 1}: 1 if cycle c starting from pair p is chosen as part of the solution, 0

otherwise

max
∑
p∈P

∑
c∈Cp

K

|c|xp
c

s.t.
∑
p∈P

∑
c∈Cp

K
(i)

xp
c ≤ 1 ∀i ∈ P

x ∈ {0, 1}|C
p
K
| ∀p ∈ P
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Kidney exchange problem

Column generation algorithm
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Kidney exchange problem

What about uncertainty?

▶ In reality the compatibility information is only known with certainty after performing
costly tests.

D1 P1

D2 P2 D3 P3

D4 P4
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▶ Constructed cycles can break after these tests are performed.
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Kidney exchange problem
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D1 P1

D2 P2 D3 P3

D4 P4

?
?

?

▶ Constructed cycles can break after these tests are performed.

▶ A better strategy is to test first and then construct a solution with the acquired
compatibility information.
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Kidney exchange problem

What about uncertainty?

▶ In reality the compatibility information is only known with certainty after performing
costly tests.

D1 P1

D2 P2 D3 P3

D4 P4

p = 0.7

p = 0.85

p = 0.15

▶ Constructed cycles can break after these tests are performed.

▶ A better strategy is to test first and then construct a solution with the acquired
compatibility information.

▶ Then a question arises as to what donor-patient pairs to test with a limited budget.

Requires development of optimization under uncertainty approaches.
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Conclusions and questions

Conclusions

▶ OR is an interdisciplinary field that studies decision-making problems from a
mathematical and algorithmic perspective.

▶ It develops tools to help decision makers.

▶ Significant algorithmic progress has been made in recent years.

▶ Further research is needed in order to extend classical results to more realistic
contexts.
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Conclusions and questions

Questions?

Thank you for your attention!
Any questions?

ayse-nur.arslan@inria.fr
https://www.inria.fr/fr/edge
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Optimization under uncertainty

Appendix:
Optimisation under uncertainty
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Optimization under uncertainty

Presence of uncertainty

▶ New challenges:
▶ Renewable energy production.
▶ Resilient network design.
▶ Healthcare/disaster management.
▶ Circular economy.
▶ Security and defense.

▶ Uncertainty:
▶ Stochastic nature of systems.
▶ Long duration of decision processes.
▶ Difficulty of precise measurements.
▶ Lack of historical information.
▶ Presence of adversarial participants.
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Optimization under uncertainty

A practical example: Shortest path under uncertainty

▶ What is the shortest path from point A to point B?

Arslan, Ayşe N. 3 / 5



Optimization under uncertainty

A practical example: Shortest path under uncertainty

▶ What is the shortest path from point A to point B?

Our first order of business is to characterize the uncertain data.
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Optimization under uncertainty

A practical example: Shortest path under uncertainty

▶ What is the shortest path from point A to point B?

Second order of business is to characterize what constitutes a ”good” solution.
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Optimization under uncertainty

A practical example: Shortest path under uncertainty

In optimization under uncertainty the notion of a good solution depends on the risk
preferences of the decision-maker.
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Optimization under uncertainty

Optimization under uncertainty paradigms

Stochastic optimization

ξ1

f (ξ1)

ξ2

f (ξ2)

x

c(ξ)⊤x

x∗

▶ Distribution P is known.

▶ Consequences are observed repeatedly.

▶ Risk level is low or moderate.

▶ Example: Distribution network design.

Robust optimization

Ξ

ξ1

ξ2

x

c(ξ)⊤x

x∗

▶ Distribution is not known (or no
distribution).

▶ Consequences are observed once.

▶ Risk level is high.

▶ Example: Disaster management.
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Optimization under uncertainty

Optimization under uncertainty paradigms

Stochastic optimization

min
x∈X

EP
ξ∈Ξ

[
c(ξ)⊤x

]
s.t. Ax ≤ b

▶ Distribution P is known.

▶ Consequences are observed repeatedly.

▶ Risk level is low or moderate.

▶ Example: Distribution network design.

Robust optimization

min
x∈X

max
ξ∈Ξ

[
c(ξ)⊤x

]
s.t. Ax ≤ b

▶ Distribution is not known (or no
distribution).

▶ Consequences are observed once.

▶ Risk level is high.

▶ Example: Disaster management.
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Optimization under uncertainty

Sequential decision-making under uncertainty

Static model :
Decide x

t

Two-stage model :
Decide x

t
Adjust with y(x, ξ)

Outcome
ξ revealed

In optimization under uncertainty the timing of decisions is important.

The difficulty of solution can increase with the number of decision stages.
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