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Operations research (OR)

» Operations research and optimization are at the intersection of multiple disciplines.
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Operations research (OR)

» OR solves optimization problems that decision-makers
(managers, politicians, engineers, etc.) encounter.

» Problems are typically expressed in terms of decisions, costs

and constraints. min f(x)
. . . . . xeX
» Tools coming from mathematics, informatics, economics

and industrial engineering are often used in their solution.

» The end result is a decision-making tool.

9
Some examples S
> imizati QIR
Route optimization 3
. . e ONe
» Planning and scheduling {‘ o oy
\ 7~ A
» Network design (telecommunications, QT/D
distribution, electricity, etc.) ¢
» Supply chain management 9
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Operations research and optimization

1

Some projects from our team

Kidney exchange

Maintenance planning

i

Phytosanitary treatments Maritime transportation
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Operations research and optimization

Classical tools of operations research?

» Mathematical programming
» Linear programming (LP/PL)
> Mixed-integer linear programming (MILP/PLNE)
> .

Graph theory and algorithms

Constraint programming (CP/PPC)

Convex analysis

Approximation algorithms

Heuristics, metaheuristics

Queueing theory, simulation, statistics

vVvyVvVvyVvyVvyVvyy

2Most topics are covered in the master MAS-ROAD
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Operations research and optimization

Mathematical programming: Linear programming

3
20 +30<12
xi <L
. T :
min C X
n
XER+ 3a +2x <12
1
s.t. Ax<b .
1 2 3 4

» Well-known algorithms: Simplex, ellipsoid, interior point, etc.
» Solvers: CPLEX, Gurobi, Clp, HiGHS, Excel-Solver etc.

N
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Operations research and optimization

Mathematical programming: Mixed-integer programming

. T
min c X
xEZn,1 XR?
s.t. Ax <b

» Integer/binary decisions that cannot be rounded from fractions:

> Do we open facility i or not?
» How many trucks do we need to send to client j from facility i?
> |f facility i is not open then it cannot be used to satisfy demand.

» Well-known algorithms: Branch & Bound, Branch & Cut etc.
» Solvers: CPLEX, Gurobi, HiGHS, GLPK etc.
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Operations research and optimization

Mathematical programming: Mixed-integer programming

» Branch & Bound: Solve relaxations and successively partition the feasible region

x

2a+30 <12
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Operations research and optimization

Mathematical programming: Mixed-integer programming
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Operations research and optimization

Difficulty of mixed-integer programming problems3

» Mixed-integer programming problems are NP-Complete in the general case.

» In practice, considerable progress has been made since the beginning.
A classical problem: Traveling salesman

» Find the shortest cycle passing through N cities
given the pairwise distances.
» In theory finding the best cycle requires testing
N! possibilities.
> For 10 cities (N=10) : < 1 milliseconds
» For 30 cities (N=30) : 35000 billion years

3Source : http://www.math.uwaterloo.ca/tsp/
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Operations research and optimization

Difficulty of mixed-integer programming problems?

» Mixed-integer programming problems are NP-Complete in the general case.

» In practice, considerable progress has been made since the beginning.
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Operations research and optimization

Difficulty of mixed-integer programming problems3

» Mixed-integer programming problems are NP-Complete in the general case.
» In practice, considerable progress has been made since the beginning.

1.9 millions cities to 0.0473% optimality 1 331 906 450 stars to 0.37% optimality
ThRG, \
e
LS o \
| e : O
\“‘\ »

» Powerful heuristics coupled with branch
& cut

» Many results dedicated to the problem

» Months of computation in parallel
processing

3Source : http://www.math.uwaterloo.ca/tsp/
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Operations research and optimization

Advanced techniques in mixed-integer programming

24 430 <12

24 +3x0 <12

3+ 20 <12 3+ 2% < 12
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Implicit enumeration Extended formulations Decomposition algorithms Geometric analysis
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What is the Kidney Exchange Problem (KEP)?

» Chronic kidney disease is a serious health condition
threatening the lives of many in our society.

> |t is the 11" most common cause of death in the world.

» There are two common treatments for this disease :
dialysis and kidney transplant.

» Dialysis is easily available but requires weakly visits to the
hospital and degrades the quality of life of the patient.

» Kidney transplants, once successfully performed may give
the patients the chance for a healthy life.

2

» Finding a willing and compatible donor can be very
difficult.

2 Y
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What is the Kidney Exchange Problem (KEP)?

> Given

> A list of incompatible patient-donor pairs
» The compatibility information between donors and patients of different pairs
> A limit K on the size of cycles

» Find a set of exchange cycles such that

» Each cycle has size < K
» Each patient-donor pair is involved in at most one cycle
» A maximum number of transplants is performed

Instance with 4 pairs, K=3 Possible solutions
4 / g b b b
¢— @ ¢ g

This problem is known to be NP-Complete for K € [3, c0). J
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Kidney exchange problem

A possible mathematical formulation of the problem

> Data

> P: set of patient-donor pairs indexed i =1,...,|P|
»> (i,j) € A: compatibility information between donors and patients of different pairs
> K: cycle size limit

P> Variables

> x; € {0,1}: 1if a transplant between donor of pair i and patient of pair j is to be
performed, 0 otherwise

max Z Xij
(i.j)eA

s.t. Z Xjj = Z Xji VieP

JEST(i) JE€ST (i)
> o<1 ViePp

JEST(i)

x € {0,1}M
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Kidney exchange problem

A possible mathematical formulation of the problem

> Data
> P: set of patient-donor pairs indexed i =1,...,|P|
»> (i,j) € A: compatibility information between donors and patients of different pairs
> K: cycle size limit
» Variables
> xjj € {0,1}: 1 if a transplant between donor of pair i and patient of pair j is to be
performed, 0 otherwise

max E Xij

(i)EA
st Y X = ZXJ, Vie P
jestiy  jes— ()
> o<1 vieP
JEST(i)
> ox<K-1 VPath € AllPaths(K)
(i,j)€Path
x € {0, 1}
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Kidney exchange problem

Another possible mathematical formulation

» Data

> P: set of patient-donor pairs indexed i =1,...,|P)|
> (i,j) € A: compatibility information between donors and patients of different pairs
> K: cycle size limit

> Additional data

> Ck: set of cycles of size at most K
> Ck(i): set of cycles of size at most K containing pair i
> |c| for ¢ € Ck: number of pairs involved in cycle ¢

» Variables
> xc € {0,1}: 1if cycle ¢ € Ck is chosen as part of the solution, 0 otherwise

max Z |c|xc
ceCk

s.t. Z x <1 VieP

c€Ck (i)
x € {0,1}/°
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Kidney exchange problem

Yet another possible mathematical formulation

» Data
> P: set of patient-donor pairs indexed i =1,...,|P|
»> (i,j) € A: compatibility information between donors and patients of different pairs
> K: cycle size limit
» Variables
> Xg € {0,1}: 1 if a transplant between donor of pair i and patient of pair j is to be
performed in a cycle starting from pair p, 0 otherwise

max > > xf TOET
PEP (i,j)EA E] S
(id)eA
Jjest (i) jes—(i) P
P

SO K<k VpeP 2
(iJ)eA P
2 > <1 viep S S <1 ViEP
PEP jest(i)

x € {071}‘-A‘><‘7;‘
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Kidney exchange problem

And finally...
» Data
»> P: set of patient-donor pairs indexed i =1,...,|P)|

> (i,j) € A: compatibility information between donors and patients of different pairs
> K: cycle size limit

» Additional data
> CZ : set of cycles of size at most K starting from pair p
> C(i) : set of cycles of size at most K starting from pair p containing pair i
> |c| for ¢ € C: number of pairs involved in cycle ¢
» Variables
> xP € {0,1}: 1 if cycle c starting from pair p is chosen as part of the solution, 0

otherwise
max Z Z lc|x?

PEP cech
s.t. Z xP <1 VieP
PEP ceCl (i)
Ikl
x € {0,1}""« VpeP
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Kidney exchange problem

Column generation algorithm

Restricled Masle Problem
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What about uncertainty?

» In reality the compatibility information is only known with certainty after performing

costly tests.
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What about uncertainty?

» In reality the compatibility information is only known with certainty after performing

costly tests.
p— P

» Constructed cycles can break after these tests are performed.

P> A better strategy is to test first and then construct a solution with the acquired
compatibility information.
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Kidney exchange problem
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Kidney exchange problem

What about uncertainty?

» In reality the compatibility information is only known with certainty after performing

costly tests.
b p=015 b

» Constructed cycles can break after these tests are performed.

» A better strategy is to test first and then construct a solution with the acquired
compatibility information.
» Then a question arises as to what donor-patient pairs to test with a limited budget.

Requires development of optimization under uncertainty approaches. J
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Conclusions and questions

Conclusions

» OR is an interdisciplinary field that studies decision-making problems from a
mathematical and algorithmic perspective.

» It develops tools to help decision makers.

v

Significant algorithmic progress has been made in recent years.

» Further research is needed in order to extend classical results to more realistic
contexts.
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Conclusions and questions

Questions?

Thank you for your attention!
Any questions?

ayse-nur.arslan@inria.fr
https://www.inria.fr/fr/edge
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Optimization under uncertainty

Appendix:
Optimisation under uncertainty
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Optimization under uncertainty

Presence of uncertainty

» New challenges:

v

>
>
>
>

Renewable energy production.
Resilient network design.
Healthcare/disaster management.
Circular economy.

Security and defense.

Arslan, Ayse N.

» Uncertainty:

YyVYVYVYY

Stochastic nature of systems.

Long duration of decision processes.

Difficulty of precise measurements.
Lack of historical information.

Presence of adversarial participants.

2/5



Optimization under uncertainty

A practical example: Shortest path under uncertainty

35’ Path 1

» What is the shortest path from point A to point B?
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Optimization under uncertainty

A practical example: Shortest path under uncertainty

35 35’ 35 Path 1

+25°

15’ 40’ 15 Path 2

+30°
13" 13" 43’ Path 3

25' 33 33 Path 4

» What is the shortest path from point A to point B?

Our first order of business is to characterize the uncertain data.

Scenario

1
2
3

Probability
0,5
0,25
0,25
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Optimization under uncertainty

A practical example: Shortest path under uncertainty

35" 35" 3% Path 1

+25°

15’ 40’ 15 Path 2

+30°

[ 13 13" 43’ Path 3

25" 33 3% Path 4

» What is the shortest path from point A to point B?

Scenario

Probability

0,25
0,25

Path1

Path2
Path3
Path4

Second order of business is to characterize what constitutes a "good” solution.
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Optimization under uncertainty

A practical example: Shortest path under uncertainty

35 35’ 3% Path 1

+25’

15’ 40’ 15 Path 2

+30' o
N Path 3
!

25' 33 33 Path 4

Scenario

Probability

Path1l |35 |35
Path2 | 20" | 45’
Path3 |18 | 18"
Path4 | 30" | 38"

In optimization under uncertainty the notion of a good solution depends on the risk

preferences of the decision-maker.
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Optimization under uncertainty

Optimization under uncertainty paradigms

Stochastic optimization
(€)' x

Robust optimization
(€)'

Arslan, Ayse N.
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Distribution P is known.
Consequences are observed repeatedly.
Risk level is low or moderate.

Example: Distribution network design.

Distribution is not known (or no
distribution).

Consequences are observed once.
Risk level is high.

Example: Disaster management.
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Optimization under uncertainty

Optimization under uncertainty paradigms

Stochastic optimization
Distribution P is known.

mi)rg Efe= [c( )Tx] Consequences are observed repeatedly.
x€

Risk level is low or moderate.
st. Ax<b

vvyyvyy

Example: Distribution network design.

Robust optimization o
» Distribution is not known (or no

distribution).
. T
Lnel)rg meag< [C( ) X] » Consequences are observed once.
Risk level is high.

st. Ax<b
» Example: Disaster management.

v
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Optimization under uncertainty

Sequential decision-making under uncertainty

t

Static model : Fm===-—----- \
Decide x } |
* T t
| Outcome !
Two-stage model : | £ revealed !
Decide x ! . Adjust with y(x,&)
! I
T I
|

In optimization under uncertainty the timing of decisions is important. J
The difficulty of solution can increase with the number of decision stages. )
5/5
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